Law of Cosines (LC)
The law of cosines is more difficult to use and normally are used to solve part of a problem
and then utilize the law of sines.
If angle 1 = 100 0 side A = 46 cm and side C = 35 cm
What is the length of angle 3, angle 2 and side B
B2 = A2 + C2 - 2AC cos ∠1
B2 = 462 + 352 - 2(46)(35) cos 1000
B2 = 2116 + 1225 - 3220(-.173648)
B2 = 3900.147132
√B2 = √3900.147132
B = 62.451 cm
Now if we wish we can use the Law of Sines to find the other angles.
Since we are still learning the Law of Cosines lets use them.
C2 = A2 + B2 - 2AB cos ∠2
352 = 462 + 62.4512 - (2)46(62.451) cos ∠2
1225 = 2116 + 3900.127 - 5745.492 cos ∠2
-4791.127 = -5745.492 cos ∠2
.833893251 = cos ∠2
33.4990 = ∠2
A2 = B2 + C2 - 2BC cos ∠3
462 = 62.4512 + 352 - (2)(62.451)(35) cos ∠3
2116 = 39000.127 + 1225 - 4371.57cos ∠3
-3009.127 = - 4371.57cos ∠3
.688340116 = cos ∠3
46.50 = ∠3
return to PCTC